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LElTER TO THE EDITOR 

SU (2) and the Kauffman bracket 
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Republic of Germany 

Received 11 February 1993 

AbstraeL 
Kauffman bracket in the framework of ChemSimons theory is explicitly shown. 

A direct relationship between the (nonguanlum) p u p  SU(2) and the 

In his seminal paper on quantum field theoly and the Jones polynomial [l], Witten 
proposed, in the framework of Chern-Simom theory based on the group SU(2) ,  
a new approach to invariants of knots and links. In this letter, we would i i e  to 
show that the mathematical object directly related to the fundamental representation 
of SU(2) is the Kauffman bracket [2]. Strictly speaking, we will show that the 
SU(2)  Chem-Simons theory at the level k, with line obsembles defined in the 
fundamental representation, directly corresponds to the (one-variable/specialization 
of the) Kauffman bracket (regular isotopy invariant of unoriented links) with the 
parameter A = exp(-rri/4lc). 

The 'half-monodromy' or (quasi-)braiding matrix derived from the ChemSimons 
theory is of the form 13-41 

IB = exp ( - t t m 2 )  k E Z* 

where t is a generator of a compact semi-simple Lie group G. Putting for G = S U ( 2 )  
l a  = $ua, a = 1,2,3 (us are the Pauli matrices), and using the Fierz identity, we 
obtain 

"1 = exp (g) @cos 21c - iEsin - 
2k 

5T 

with 

U E 6 i j6k ,  E 6$ikj . (3) 
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The correspondence 

yields the following skein relation: 

where 

A = exp (-$) 
and ( ) denotes the normalized quantum-field-theory expectation value with respect to 
the ChemSimons ‘measure’. Rotating the graphs in (9, we obtain a new equivalent 
skein relation 

A ( ) ( ) - A - I (  X ) = ( A Z - A - Z ) (  U ”)  
Combining (5) and (7) produces 

(7) 

AI1 the lines entering our graphs should be unoriented. It follows from the fact that 
the fundamental representation of the group SU(2)  is noncomplex (pseudo-real) [5 ] ,  
and the expectation values of the l i e  observables in the fundamental representation 
have to be invariant with respect to the reversing of orientation 141. 

Ib compute the dependence of a line on a framing one should contract two indices 
in the exponent of IB (say, j and le) yielding 

exp (-%) 37ri = A3 

( I * l ) = - A k 3 (  10) 

(9) 

where the minus sign follows from the pseudo-reality of the fundamental 
representation of SU(2) ,  and the integers mean thk framing. Closing in (8) the 
left legs of all the (three) diagrams with arcs, as well as the right ones, and applying 
(lo), we obtain 

t (0) = -AZ - A-’ .  (11) 

In (111, we have used the property of locality of ChernSimons theory, which can be 
expressed as 

V I  L7) = (L , )  (Lz) (12) 
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where the symbol U denom a distant union of links (links separated by a 2-sphere). 
ColIecting (S), (11) and (12) we can write down the full set of the axioms of the 

(one-variable) Kauffman bracket: 
(i) 

(0) = 1 (1k) 

(0 U L) = (-AZ - AM2) (L) 

(U) 

(134 

(i) 

where A = exp(-7ri/4lc). 
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