SU(2) and the Kauffman bracket

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1993 J. Phys. A: Math. Gen. 26 L401
(http://iopscience.iop.org/0305-4470/26/8/002)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 171.66.16.68
The article was downloaded on 01/06/2010 at 21:07

Please note that terms and conditions apply.

LETTER TO THE EDITOR

$S U(2)$ and the Kauffman bracket

B Broda \ddagger
University of Clausthal, LeibnizstraBe 10, D-W-3392 Clausthal-Zellerfeld, Federal Republic of Germany

Received 11 February 1993

Abstract

A direct relationship between the (non-quantum) group $S U(2)$ and the Kauffman bracket in the framework of Chern-Simons theory is explicitly shown.

In his seminal paper on quantum field theory and the Jones polynomial [1], Witten proposed, in the framework of Chern-Simons theory based on the group $S U(2)$, a new approach to invariants of knots and links. In this letter, we would like to show that the mathematical object directly related to the fundamental representation of $S U(2)$ is the Kauffman bracket [2]. Strictly speaking, we will show that the $S U(2)$ Chern-Simons theory at the level k, with line observables defined in the fundamental representation, directly corresponds to the (one-variable/specialization of the) Kauffman bracket (regular isotopy invariant of unoriented links) with the parameter $A=\exp (-\pi \mathrm{i} / 4 k)$.

The 'half-monodromy' or (quasi-)braiding matrix derived from the Chern-Simons theory is of the form [3-4]

$$
\begin{equation*}
\mathbb{B}=\exp \left(-\frac{\pi \mathrm{i}}{k} t^{\otimes 2}\right) \quad k \in \mathbf{Z}^{ \pm} \tag{1}
\end{equation*}
$$

where t is a generator of a compact semi-simple Lie group G. Putting for $G=S U(2)$ $t^{a}=\frac{1}{2} \sigma^{a}, a=1,2,3$ (σ s are the Pauli matrices), and using the Fierz identity, we obtain

$$
\begin{gather*}
\mathbb{B}=\exp \left(-\frac{\pi \mathrm{i}}{4 k} \sum_{a=1}^{3} \sigma_{i j}^{a} \otimes \sigma_{k i}^{a}\right)=\exp \left[\frac{\pi \mathrm{i}}{4 k}(\mathbb{I}-2 \mathbb{E})\right] \\
=\exp \left(\frac{\pi \mathrm{i}}{4 k}\right)\left(\mathbb{I} \cos \frac{\pi}{2 k}-\mathrm{i} \mathbb{E} \sin \frac{\pi}{2 k}\right) \tag{2}
\end{gather*}
$$

with

$$
\begin{equation*}
\mathbb{I} \equiv \delta_{i j} \delta_{k l} \quad \mathbb{E} \equiv \delta_{i l} \delta_{k j} \tag{3}
\end{equation*}
$$

\ddagger Permanent address: Department of Theoretical Physics, University of Lódź, Pomorska 149/153, PL-90236 Lódz, Poland; E-mail address: ptbb@ibm.rz.tu-clausthal.de

The correspondence

$$
\begin{equation*}
\mathbb{B} \longleftrightarrow / / \quad \mathbb{B}^{-1} \longleftrightarrow \lambda / \tag{4}
\end{equation*}
$$

yields the following skein relation:

$$
\begin{equation*}
A\langle/\rangle-A^{-1}\langle\backslash\rangle=\left(A^{2}-A^{-2}\right)\langle\|\rangle \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
A=\exp \left(-\frac{\pi \mathrm{i}}{4 k}\right) \tag{6}
\end{equation*}
$$

and 〈〉 denotes the normalized quantum-field-theory expectation value with respect to the Chern-Simons 'measure'. Rotating the graphs in (5), we obtain a new equivalent skein relation

$$
A\rangle\rangle-A^{-1}\langle Y\rangle=\left(A^{2}-A^{-2}\right)\left\langle\begin{array}{l}
\bigcup \tag{7}\\
\cap
\end{array}\right\rangle
$$

Combining (5) and (7) produces

$$
\left\langle\Delta^{\prime}\right\rangle=A\left\langle\begin{array}{l}
U \tag{8}\\
\cap
\end{array}\right\rangle+A^{-1}\langle\|\rangle
$$

All the lines entering our graphs should be unoriented. It follows from the fact that the fundamental representation of the group $S U(2)$ is non-complex (pseudo-real) [5], and the expectation values of the line observables in the fundamental representation have to be invariant with respect to the reversing of orientation [4].

To compute the dependence of a line on a framing one should contract two indices in the exponent of \mathbb{B} (say, j and k) yielding

$$
\begin{equation*}
\exp \left(-\frac{3 \pi \mathrm{i}}{4 k}\right)=A^{3} \tag{9}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\langle\mid \pm 1\rangle=-A^{ \pm 3}\langle\mid 0\rangle \tag{10}
\end{equation*}
$$

where the minus sign follows from the pseudo-reality of the fundamental representation of $S U(2)$, and the integers mean the framing. Closing in (8) the left legs of all the (three) diagrams with arcs, as well as the right ones, and applying (10), we obtain

$$
\begin{equation*}
\langle O\rangle \stackrel{A}{=}-A^{2}-A^{-2} \tag{11}
\end{equation*}
$$

In (11), we have used the property of locality of Chern-Simons theory, which can be expressed as

$$
\begin{equation*}
\left\langle L_{1} \cup L_{2}\right\rangle=\left\langle L_{1}\right\rangle\left\langle L_{2}\right\rangle \tag{12}
\end{equation*}
$$

where the symbol 4 denotes a distant union of links (links separated by a 2 -sphere).
Collecting (8), (11) and (12) we can write down the full set of the axioms of the (one-variable) Kauffman bracket:
(i)

$$
\begin{equation*}
\langle\emptyset\rangle=1 \tag{13c}
\end{equation*}
$$

(ii)

$$
\begin{equation*}
\langle\bigcirc \sqcup L\rangle=\left(-A^{2}-A^{-2}\right)\langle L\rangle \tag{13b}
\end{equation*}
$$

(iii)

$$
\langle\backslash\rangle=A\left\langle\begin{array}{l}
\cup \tag{13a}\\
\cap
\end{array}\right\rangle+A^{-1}\langle\|\rangle
$$

where $A=\exp (-\pi \mathrm{i} / 4 k)$.
The author is indebted to Professor H D Doebner for his kind hospitality in Clausthal. The work was supported by the Alexander von Humboldt Foundation and the KBN grant 202189101.

References

[1] Witten E 1989 Commun Math. Phys. 121351
[2] Kauffman L H 1987 Topology 26395
Kauffman L H 1991 Knots and Physics (Singapore: World Scientific)
[3] Broda B 1990 Mod. Phys. Lett A 52747
[4] Guadagnini E 1992 Int J. Mod. Phys. A 7877
[5] O'Raifeartaigh L 1988 Group Structure of Group Theories (Cambridge: Cambridge University Press) p 57

